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Abstract

We used high resolution Atomic Force Microscopy (AFM) to image compaction of

linear and circular DNA by the yeast mitochondrial protein ABF2p , which plays a

major role in maintaining mitochondrial DNA. AFM images show that protein bind-

ing induces drastic bends in the DNA backbone for both linear and circular DNA.

At high concentration of ABF2p DNA collapses into a tight globular structure. We

quantified the compaction of linear DNA by measuring the end-to-end distance of

the DNA molecule at increasing concentrations of ABF2p. We also derived a poly-

mer statistical mechanics model that gives quantitative description of compaction

observed in our experiments. This model shows that a number of sharp bends in

the DNA backbone is often sufficient to cause DNA compaction. Comparison of

our model with the experimental data showed excellent quantitative correlation and

allowed us to determine binding characteristics for ABF2. Our studies indicate that

ABF2 compacts DNA through a novel mechanism that involves bending of DNA

backbone. We discuss the implications of such a mechanism for mitochondrial DNA

maintenance.

∗Correspondence should be addressed to A.N.: noy1@llnl.gov

2



INTRODUCTION

Mitochondria participate in many critical processes in the cell lifecycle.

Aside from its primary role in ATP production, mitochondria also act as sig-

naling centers through regulation of calcium, iron and metabolite levels in the

cytosol. These organelles are also responsible for the main switch controlling

apoptosis. Such critical responsibilities place stringent requirements on the in-

tegrity of the mitochondrial DNA (mtDNA). A variety of processes threatens

mtDNA. Respiratory chain of mitochondrial metabolism produces large levels

of oxygen radicals which can attack mtDNA. Oxidative damage to mtDNA

often leads to several clinical disorders including Parkinson’s, Hutchinson’s,

and Huntington’s diseases [1]. Ironically, the very job that is required to keep

the cell alive also yields dangerous byproducts. In order to operate under these

harsh conditions mitochondria need to package mtDNA in a way that protects

it from damage, while not impairing the normal functions of mtDNA such as

replication and transcription.

Mammals [2, 3] and the budding yeast S. cerevisiae [4–6] package mtDNA in

compact globular structures similar to a bacterial nucleoid. These mt-nucleoid

structures are distinctly different from the packaging of DNA into chromatin in

the cell nucleus. Researchers have firmly established the mechanism of histone

proteins action in packaging of nuclear DNA. However, very little data exists

on the identity or function of the proteins that facilitate the formation of the

mt-nucleoid.

Diffley and Stillman found that a particular 20 kDa protein was present in

relatively high abundance among the various polypeptides isolated from mt-

nucleoids. This protein, ABF2p (ARS binding factor 2) displays interesting

DNA binding characteristics: it binds non-specifically to general regions of

DNA, but exhibits phased binding to replicating sequences such as ARS1 [7].

ABF2p also induces negative supercoiling in DNA in the presence of topoi-

somerase. While ABF2p is not required for mtDNA replication,changes in

ABF2p levels alter mtDNA copy number [8], and null ABF2p mutants lose

their wild type (ρ+) mtDNA [9]. Data also indicate that levels of ABF2p di-
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rectly influence the number of recombination intermediates in vivo [10]. This

information, coupled with the high abundance of ABF2p , lead researchers

to suggest that ABF2p is a primary mt-DNA packaging protein. ABF2p is

closely related to the HMG family; its sequence contains two HMG boxes

linked by six amino acids [9]. HMG proteins are, among other activities,

involved in the structural organization of packaged DNA in higher ordered

structures such as chromatin. However no known DNA packaging mechanism

uses HMG proteins as the fundamental packaging unit. Therefore, it is likely

that the complete DNA packaging mechanism employed by mitochondria is

different from other known DNA packaging processes. The establishment of

such mechanism should provide valuable information about the role of ABF2p

in the overall mt-DNA maintenance process.

Recent developments in molecular-scale imaging powered a number of un-

precedented advances in biophysics. For example, high resolution atomic force

microscopy (AFM) can now visualize single biological molecules in native en-

vironments in real space [11]. Researchers have used AFM to image protein

binding to DNA [? ], virus particle surfaces, cell surfaces and determine the

strength of protein-ligand interactions and elasticity of DNA molecule [? ?

]. AFM also excels in visualizing the conformation of linear polymers such

as DNA [12–14]. Early on, Balhorn and colleagues used AFM to investigate

the mechanism of the DNA compaction by protamine proteins from sperm

[15]. Others have used AFM to study the physical properties of DNA conden-

sation by various ionic species which may in fact have biological significance

in terms of the mechanism used by viruses to package DNA [16–18]. Recent

refinements in AFM imaging technology, such as new imaging modes and new

sharper AFM probes [? ? ], pushed the technique’s limits even further.

In this paper we investigated binding of ABF2p to DNA using high reso-

lution atomic force microscopy. We found that when ABF2p bound to DNA

it induced pronounced structural distortions in DNA conformation. When we

increased the protein coverage we observed a striking collapse of the DNA

molecule into a dense globular complex. Our observations lead us to suggest

that ABF2p uses a novel mechanism to compact DNA simply by introducing
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a number of sharp bends into the DNA backbone. This mechanism is dis-

tinctly different from all previously known mechanisms of DNA compaction.

We also present a simple mathematical model that describes the compaction

process quantitatively and we compare this model with the experimental ob-

servations. Finally, we used our model to derive ABF2p binding parameters

from the AFM data.

MATERIALS AND METHODS

ABF2p Isolation The pMALc2X vector (New England Biolabs) contain-

ing residues 21-177 of the ABF2 gene was inserted between the initiator Met

and the six His residues of the pET28b(+) expression vector (Novagen). The

pET28b-ABF2 vector was introduced into E. coli BL21(DE3) for expression.

Purification of the His6 tagged protein was carried out initially with 500

mM NaCl lysis buffer, then dialyzed to low salt buffer prior to ion exchange

chromatography. Concentrated protein samples at 20-70 mg/ml (20 mM Na-

HEPES pH 7.5, 1 mM Na-EDTA, 4nM DTT, 0.1 w/v Na-azide), were then

diluted to 4 mg/ml in Tris buffer (10 mM Tris-Cl, pH 7.8, 4 mM DTT, 1 mM

Na-EDTA). ABF2p binding activity to either pLitmus-38(+) or linear lambda

phage DNA (New England Biolabs) was assayed by gel-retardation.

pBR322 DNA Relaxed circular pBR322 (TopoGen) was used in AFM

images of circular DNA. Linear DNA was prepared by digest of supercoiled

pBR322 at the BamH1 site.

AFM Imaging and Analysis Substrates were prepared for imaging by

first applying 3 µl of 0.1% poly-L-lysine (PL) to freshly cleaved mica. After

1 minute the mica was rinsed with copious amounts of water and dried with

filtered N2 stream for 1 minute. DNA/ABF2p complexes were prepared in

100 mM NaHCO3 buffer. DNA concentration was held constant at 1 µg/ml

and ABF2p concentrations were varied. After we mixed the protein and DNA

solutions we allowed them to equilibrate for 5 minutes; then 1 µl of sample

solution was applied to the PL coated mica substrate and allowed to adsorb

for 1 - 2 minutes at room temperature. The substrate was then rinsed with
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water and finally dried with filtered N2 stream. All images were acquired

in air using a Multimode Nanoscope IIIa Atomic Force Microscope (Digital

Instruments). Scans were taken in tapping mode using etched silicon FESP

tips (NanoWorld).

Measurements of DNA end-to-end distances and protein-induced bend an-

gles were done using image analysis tools built into the Nanoscope IIIa soft-

ware. We assume the DNA are pulled to the PL-coated mica surface with

little reorganization of the DNA strands in the plane parallel to the surface.

Therefore we take the images to represent the 2-dimensional projection of the

molecule’s native 3-dimensional configuration in solution. The end-to-end dis-

tances of the DNA therefore represent a projection of the true distance and

to compare them with our 3-dimensional model we must multiply our average

measured distances 〈R〉m by a factor of π/2 (see Appendix for details).

We fir our corrected average measured end-to-end distances to our model

using the Levenberg-Marquardt algorithm to carry out a non-linear χ2-

minimization in IGOR Pro 4.0 (Wavemetrics).

Circular Dichroism Linear DNA (pBR322) in 100 mM NaHCO3 at ∼50

µg/ml were titrated with aliquots of concentrated ABF2p in a 1 cm path

length quartz cuvette. CD spectra were taken using a J-715 spectropolarimeter

(Jasco) operated at room temperature. We first subtracted the baseline from

the raw CD spectra and then smoothed them using a 2nd order, 11 point

Savitzky-Golay algorithm in IGOR Pro 4.0 (Wavemetrics). For each protein

concentration [ABF2p]i, the protein CD at 275 nm was subtracted from the

corresponding DNA/protein CD.

AFM IMAGING OF ABF2P-DNA

To investigate protein binding to DNA we imaged individual pBR322 plas-

mid DNA molecules after we incubated them with ABF2p . After incubating

the protein and DNA in solution, we immobilized DNA-protein complexes on

atomically-flat mica surfaces pre-treated with poly-L-lysin. We kept the DNA

concentration in solution low enough to obtain single isolated molecules on the
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surface. AFM images of the DNA molecules before exposure to protein show

smooth contours of the backbone, typically devoid of sharp bends or other

distinguishing features (Figure 1A). In contrast, when we exposed DNA to the

ABF2p we observed multiple sharp bends in the DNA backbone. Images at

low concentration of the ABF2p at most instances showed a protein molecule

bound at the site of the bend (at least to within the limits of AFM resolution).

Therefore we can conclude that binding of the protein results in the forma-

tion of these bends. This behavior is not entirely surprising, since other HMG

family proteins often induce structural distortions in the DNA [19–22]. As we

increased the concentration of the protein, the number of bends in the DNA

backbone also increased. At higher concentrations of ABF2p we clearly started

to observe the overall compaction of the molecule(Figure 1C). Finally, at very

high concentration of the protein DNA collapsed into globular nucleoid-like

structures (Figure 1D,E).

Diffley and Stillman reported that ABF2 induced negative supercoiling in

DNA [9]. It is unclear, however, if supercoiling plays a significant role in the

compaction mechanism. To test this possibility we imaged ABF2p complexes

with relaxed circular DNA. We used relaxed circular pBR322 plasmid for these

experiments, which allowed us to eliminate any possibility of sequence depen-

dence influencing our experiments. Remarkably, AFM images of ABF2p com-

plexed with circular DNA show almost identical behavior to what we observed

for linear DNA. Protein binding induced large bends in the DNA backbone

and the number of bends progressively increased with the increase in the pro-

tein concentration. At high ABF2p concentration DNA again collapsed into

globular structures. This experiment strongly indicates that supercoiling does

not play a significant role in the mechanism of the ABF2p actions. Rather, we

believe that negative supercoiling observed by Diffley and Stillman can simply

be a byproduct of the structural distortions that ABF2p introduces into the

backbone of circular DNA.

We can also use AFM images of the partially-compacted DNA at low con-

centrations of ABF2p to estimate the angle of the DNA backbone bend induced

by the protein. We have measured the bending angle for 43 different DNA
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FIG. 1: AFM images of linearized pBR322 DNA molecules after exposure to in-

creasing concentrations of ABF2p .A: No ABF2p ; B 1.5 µg/mL; C 3.5 µg/mL; D

7 µg/mL;E 15 µg/mL; D 25 µg/mL; Inset: Close-up image of a bend in the DNA

backbone induced by the bound protein (bright dot).

molecules which had isolated protein units bound to DNA (Figure 1, Inset).

Histogram of the bend angles shows a peak at 102◦ (Figure 3). This value is

clearly different from the mica lattice angle of 120◦; therefore, we are confident

that mica does not cause this structural distortion. The bends caused by the

ABF2p occur over a very short distance, which also distinguishes them from

the random bends that sometimes appear when DNA adsorbs to the surface.

Therefore our images indicate that ABF2p bends DNA by about 78◦ (if we

adopt the angle measuring convention common to structural studies). Our

measured value of the bend angle compare favorably with the literature values

for the bend angles that other proteins from the HMG family induce in DNA.

For example, SRY bends DNA by about 70◦ [23] and SOX bends DNA by

about 83◦ [24]. However, a direct comparison between the literature values

and our measured bend angle value is difficult since all the reported structures

contain only one HMG box, whereas ABF2p contains two HMG boxes. At
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FIG. 2: AFM images of relaxed circular pBR322 DNA molecules after exposure to

increasing concentrations of ABF2p .A: No ABF2p ; B 1.5 µg/mL; C 3.5 µg/mL;

D 7 µg/mL; E 15 µg/mL; D 25 µg/mL.

present, resolution constraints do not allow us to determine whether ABF2p

binds to the DNA as a monomer or as a dimer, or whether the bend that we

observe consists of two closely spaced sub-bends. Further investigations uti-

lizing higher resolution probes, such as single-wall carbon nanotube AFM tips

[25, 26] might provide more information about the binding mode for ABF2p .

Our AFM images do not show any further type of aggregation or distor-

tion besides the bend formation up until very high concentrations of protein,

when it becomes difficult to discern individual protein molecules in the tightly

compacted globular structure. We also have not found any clear evidence of

cooperative binding. Mostly, the protein-DNA complexes showed random dis-

tribution of bends throughout the length of DNA, whereas cooperative binding

would have forced a clustering of the bends in certain regions of DNA. Our

images suggest that the major effect of the ABF2p binding to the DNA is

the formation of sharp bends in the DNA backbone. Qualitatively, such bends

would reduce the intrinsic stiffness of DNA and lead to the overall reduction of
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FIG. 3: Histogram of the bend angles measured from 42 images of individual DNA

molecules exposed to ABF2p

the DNA size in solution. However, it is unclear whether bending of the DNA

backbone alone is sufficient to induce compaction. To answer this question

quantitatively we need to consider how such bending changes the dynamics

of a stiff polymer chain in solution. To address this question we developed

a model that accounts for small, localized distortions in the DNA backbone

while maintaining the nature of a DNA molecule elsewhere along its contour.

DNA-protein complex conformation: bent-Worm-Like Chain Model

We base our model on Kratky and Porod’s Worm-Like Chain (WLC) model

[27] which describes the statistical behavior of a random flight polymer chain

that also has an intrinsic stiffness associated with it. We modify this model to

include a number P of fixed bends of angle φ. For simplicity we assume that

these bends are uniformly distributed along the DNA helix. We then derive the

expression for the mean-squared end-to-end distance for such a polymer chain.

We include a detailed mathematical derivation of this bent-Worm-Like Chain

(bWLC ) model in the Appendix, and here we just state the main premises

and results of this model.

We start with a DNA chain of contour length L. The intrinsic stiffness of

10



the DNA is governed by its persistence length A, which incorporates effects

of temperature, charge, screening, and solute-solvent interactions. We assume

that the bends that we introduce into the DNA do not affect its structure in

the regions between the bends. In addition, we allow the dihedral angles to

rotate freely in our model. We obtain the following exact analytical solution

for the mean-squared end-to-end distance for an ensemble of linear polymers

that incorporate P equidistant bends of angle φ:

〈
R2

〉
bWLC

=

[
1 + P − (P + 2)Γ + ΓP+2

(1− Γ)2

] [
2AL

P + 1
− 2A2

(
1− e−

L
A(P+1)

)]
−

[
PΓ− (P + 1)Γ + Γ2(P+1)

(1− Γ)2

] [
2AL

P + 1
+ 2A2

(
1− e

L
A(P+1)

)]
(1)

Γ = − cos φ e−
L

A(P+1)

This result is consistent with the original Kratky-Porod model since it recovers

the original WLC expression when no bends are present (P=0 ). The most

interesting aspect of this expression is that it predicts a significant drop in the

average end-to-end distance as the number of bends increases (Figure ). This

effect is most noticeable when the bend angle approaches 90◦ and it diminishes

as the bend angles approach 180◦. When the bend angle becomes equal to

180◦, the bends vanish and we again recover the original WLC model behavior.

Significantly, our model shows that the introduction of bends into the DNA

backbone can alone cause significant compaction of the DNA. Therefore, it is

consistent with the mechanism of ABF2p action that we propose.

As compaction proceeds the frequency of DNA-DNA interactions will in-

crease. Therefore contributions to the global DNA structure from the steric

repulsion between DNA segments will increase with added protein. We ex-

pect that in the last stages of compaction when the segments are very close

together the contribution from these excluded volume effects should become

rather significant. Since we are representing DNA as a phantom chain we do

not take into account any of the steric repulsion effects. To make our model
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more realistic we need to introduce a correction that would account for these

excluded volume effects. Treatment of DNA segments interacting with one an-

other can become quite complex if we attempt to account explicitly for charge

repulsion, Leonard-Jones potential, salt counter-ion shielding, etc. Moreover,

the interaction becomes virtually impossible to calculate if we try to include

bound proteins in the overall potential. However it has been shown that such

detailed descriptions of the pair potential is unnecessary given that the short

range potential is conserved [28, 29] Therefore, it is reasonable to neglect long

range potentials and simply approximate the interaction between segments as

a short range repulsive force [30]. Several authors have applied perturbation

theory to this problem and obtain the following first order correction [30–35]:

〈
R2

〉 ∼=
〈
R2

〉
o

(
1 +

4

3
z + · · ·

)
(2)

z =

(
3

2π 〈R2〉o

)3/2

βn2
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FIG. 5: Plot of average end-to-end distance for linear pBR322 DNA molecules and

function of average ABF2p concentration. Lines represent the b-WLC model fits to

the data without (dashed line) and with (solid line) excluded volume correction.

where 〈R2〉o is the mean-squared end-to-end distance in the unperturbed state,

n is the number of Kuhn statistical segments, and β is the binary cluster

integral for a pair of segments. The parameter β represents the effective volume

excluded to one segment by another. Odijk and other estimated the excluded

volume between two cylindrical Kuhn segments of length b and diameter D

as πb2D/2 [36, 37]. As the protein binds to the double helix it increases the

effective diameter of the cylinder from the 2 nm value characteristic of the free

DNA. TO calculate the excluded volume correction in this case we assumed

that we can represent the areas of DNA covered with protein as helices of larger

diameter and that the contribution of these larger helices is proportional to

the amount of the bound protein (see Appendix for details).

We tested our model by comparing average end-to-end distances obtained

in the experiment with the model predictions. AFM images of individual com-

pacted DNA molecules give us the ability to measure the end-to-end distance

directly for a large number of molecules and collect necessary statistics. Fig-

ure 5 shows that the measured end-to-end distance sharply decreases with the
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increase in the ABF2p concentration, as expected from images on Figure 1.

We can fit our data to the b-WLC model if we assume that (a) the number

of bends,P , is proportional to the amount of bound protein, and (b) ABF2p

binding can be described with a simple binding constant Kd and a Hill constant

q.

P = Pmax
(C/Kd)

q

1 + (C/Kd)q
(3)

where Pmax is the maximum number of bends that a protein can create in a

given DNA length. We used the 102◦ value for the bend angle that we mea-

sured in our experiments and assumed that the maximum number of bends

in the DNA is determined by the pBR322 length and ABF2p footprint. If

we use the literature value of 30 base pairs as ABF2p footprint [9], then the

maximum number of bends (i.e. binding sites) that the protein can introduce

into pBR322 DNA (which contains 4,361 base pairs) is 145. When we fit our

experimental data to our model using these values we obtained an excellent fit

to the experimental data (Figure 5, solid line). For comparison, the b-WLC

model without the excluded volume correction provided a much less satisfac-

tory fit (Figure 5, dotted line), especially at high protein concentration where

steric repulsion makes the greatest contribution. We obtained the best fit to

the experimental data for the protein binding constant KD = 1.38µM and Hill

coefficient of n = 1.2. The model fit also yields the value of the persistence

length for free DNA of 48 nm, which matches the values found by experiments

using the standard WLC model [38, 39]. These comparisons indicate that our

model captures the essential physics of the compaction process induced by

ABF2p .

Finally, to compare the values of protein dissociation KD predicted by our

model with the experimental KD value we used CD spectroscopy to study

binding of ABF2p to DNA. The technique is based on that used by McAfee

et. al. in the study of equilibrium binding of Sac7d and Sso7d to DNA

[40, 41]. It has been shown that DNA CD in the region 250-310 nm is sen-

sitive to conformational changes in the double helix [42, 43]. Conveniently,

this band generally has the weakest CD for protein spectra. Therefore, this
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region represents a good choice for monitoring binding of a protein that dis-

torts DNA, such as ABF2p. CD spectra obtained at increasing concentrations

of ABF2p clearly showed an increase in DNA distortion that saturates at

protein concentrations above 80µg/mL (Figure 6A). The same data plotted
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in Hill coordinates (Figure 6B) indicate that ABF2p binding is weakly co-

operative with the Hill constant of 1.4. The Hill plot shows that at ABF2p

concentrations above 60µg/mL the cooperativity parameter sharply rises to

3.1; yet, we need to interpret these data with caution. As some literature

examples show, rather than indicate the switch in protein binding mechanism

this change might indicate a change in the structure of the protein-DNA com-

plex that would have a stronger effect on the CD properties [?]. Significantly,

the CD data for the protein binding in the initial regime (Figure 6A, solid

line) yield the binding constant KD = 1.4µM, which is almost identical to the

value of KD = 1.38µM that we obtained from our AFM data and the b-WLC

model. The values of the Hill coefficient that we obtained from the AFM im-

ages (n=1.2) and the CD data (n=1.4) also show very good agreement. This

comparison validates the b-WLC model and also confirms our hypothesis that

ABF2p compacts DNA simply by placing sharp bends along the DNA double

helix.

This mechanism can lead only to vaguely defined globular conformations

of the DNA-protein complexes, which is quite similar to the appearance of

the mt-nucleoid. It is also important to note that ABF2p action is strikingly

different from other known compaction mechanisms, which typically involve

much more ordered superstructures such as chromatin in the case of histone-

induced packaging in the nucleus, or DNA toroids formes by protamines in

sperm cells.

Further studies would be necessary to uncover the role of such a packaging

arrangement in the regulation of DNA in mitochondria. However, we can

speculate that such loose packing could simplify access of various regulatory

proteins to DNA. Such an arrangement could allow the mitochondrion to avoid

the need for a sophisticated DNA handling apparatus similar to the multi-stage

machinery present in the eucaryotic cell nuclei.
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CONCLUSIONS

We have used high resolution atomic force microscopy to observe binding

of mitochondrial protein ABF2p to linear and circular DNA plasmids. Sur-

prisingly, our images showed that protein biding induces sharp bends of about

102◦ in the DNA backbone. AFM images also clearly showed that ABF2p

binding results in the compaction of DNA molecules for both linear and cir-

cular DNA. Moreover, at high protein concentration DNA molecules collapsed

into compact globular structures reminiscent of a mitochondrial nucleoid. To

analyze this compaction process we have developed a statistical model that

describes the DNA-protein complex as a stiff polymer chain that has sharp

bends incorporated throughout its length. Using this model, we have shown

that incorporation of bends into the DNA backbone is alone sufficient to cause

DNA compaction. End-to-end distances predicted by the model showed ex-

cellent agreement with the end-to-end distances that we measured from the

AFM images. Moreover, binding parameters that we obtained from our model

showed excellent agreement with the results of bulk studies. Significantly, the

ABF2p compaction mechanism that we established appears to be distinctly

different from common DNA packaging proteins.

Our findings have important implications for several areas. First, we showed

that high-resolution AFM imaging can provide quantitative information re-

garding protein-DNA interactions. Single molecule imaging not only can pro-

vide information on the geometrical conformation of the protein-DNA com-

plexes, but also can determine thermodynamic binding parameters. We believe

that AFM will be an important part of the modern biophysics toolkit for stud-

ies of protein-DNA interactions. Second, we believe that our results will be

important for establishing the mechanisms of mitochondrial DNA maintenance

and regulation. The apparent loose packing of DNA by the ABF2p should pro-

vide important clues for the structure of the mitochondrial nucleoid and for

possible access pathways for regulatory proteins. Further AFM studies using

other proteins should provide a wealth of information about maintenance and

regulation of mitochondrial DNA.
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APPENDIX

〈R2〉bWLC Worm-Like Chain with Bends

Consider a piece of a freely rotating chain (FRC) with some arbitrary num-

ber of segments p (for a detailed explanation of the FRC see P.J. Flory [44] or

Yamakawa [30]). We join several of these pieces together such that the joint

between pieces makes an angle φ. All other joint angles within the pieces are

equal to θ. Rotation about each bond is unrestricted. Therefore θi = θ for

i = 1, 2, . . . , p − 1 and θp = φ for each piece in the chain. The mean squared

end-to-end distance of the chain is given by,

〈R2〉 =
n∑

i=1

n∑
j=1

〈ri · rj〉

=
n∑

i=1

〈r2
i 〉+ 2

n−1∑
i=1

n∑
j>i

〈ri · rj〉 (4)

The first sum in equation (4) is simply the sum over a2. The second sum

is a little more involved. The factor of 2 ensures that we need only take the

product of segment i = 1 with j = 2, . . . , n and segment i = 2 with j = 3, . . . , n

and so on up to i = n− 1 with j = n. Consider the case of i = 1, we will look

at one piece from j = 2, . . . , p.

p∑
j=2

〈r1 · rj〉 =

p∑
j=2

αj−1

Summing over the next piece should include the fixed angle φ in place of a

θ. Let β = − cos φ, then for j = p + 1, . . . , 2p we have,

2p∑
j=p+2

β

α
αj−1 = αp β

α

p∑
j=2

αj−1

Likewise, the sum over the third piece of the chain must include two factors

of β and remove two factors of α,

3p∑
j=2p+2

β2

α2
αj−1 = α2p

(
β

α

)2 p∑
j=2

αj−1
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We can see the (m + 1)th piece is given by,

αmp

(
β

α

)m p∑
j=2

αj−1

So for a chain of n segments divided into n
p

pieces, there will be n
p
−1 bends.

The entire sum of projections of j > i for i = 1 is therefore given by,

n∑
j=2

〈r1 · rj〉 = a2

n
p
−1∑

m=0

αmp

(
β

α

)m p∑
j=2

αj−1 (5)

Notice in equation (5) that the starting index in the sum over j is j = 2.

Therefore we lose the projection of segment rp+1 on to r1 for each peice in the

chain (ie. the first segment of each peice is not included in the sum over j).

Likewise, when i = 2 we lose the first and second segments of each piece. These

lost projections will be accounted for in other sums later. Let (5) inserted into

the second term of (4) be called A, not to be confused with the persistence

length A. So to multiply every segment in the first piece with the rest of the

n
p
− 1 pieces (neglecting lost terms) we have,

A0 =

n
p
−1∑

m=0

αmp

(
β

α

)m p−1∑
i=1

p∑
j>i

αj−1

The second piece is identical to the first except we now need only sum over

n
p
− 2 pieces,

A1 =

n
p
−2∑

m=0

αmp

(
β

α

)m p−1∑
i=1

p∑
j>i

αj−1

and so on up until we reach the last piece in which it simply sums over itself

and we only need m = 0. Therefore we write the entire sum as,

A =

n
p
−1∑

s=0

As =

n
p
−1∑

s=0

n
p
−1−s∑
m=0

αmp

(
β

α

)m p−1∑
i=1

p∑
j>i

αj−i (6)

Equation (6) is just a combination of geometric series that can be easily

solved. The result is given by,
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A =

[
n
p
−

(
n
p

+ 1
)
Q + Q

n
p
+1

(1−Q)2

][
pα

1− α
− α− αn+1

(1− α)2

]
(7)

where Q = αp−1β. Now we will account for the lost terms in the sum (6). As

mentioned before, the construction of A periodically skips over segments as it

sums over i. By inspection of (6) we can see the following:

for i= we miss j=

1 mp+1

2 mp+1, mp+2
...

...

p-1 mp+1, mp+2, . . . , mp+p-1

where m = 1, 2, . . . , n
p
− 1. We therefore construct the following sum which

contains the above terms,

B =

n
p
−2∑

s=0

n
p
−1−s∑
m=1

αmp

(
β

α

)m p−1∑
i=1

i∑
j=1

αj−i (8)

The solution can again be simplified into geometric series which result in,

B =

[
(n

p
− 1)Q− n

p
Q2 + Q2n

p

(1−Q)2

][
− α2

(1− α)2
(1− α−p)− p

α

1− α

]
(9)

A third and final term is needed to make up for another missed product in

the sum (6). This is to account for the dot product of the pth segment of each

piece with all higher number segments. This sum is simply given by,

C =

n
p
−2∑

s=0

n
p
−2−s∑
m=0

αmp βm+1

αm

p∑
j=1

αj−1 (10)

Which can be solved similarly as A and B. The result is,
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FIG. 7: Schematic representation of the relationship between the b-WLC model and

the freely-rotating chain (FRC) model. We start with a FRC model that contains

abnormal bend angles at regular intervals. The final b-WLC model retains the

discontinuous bends of angle φ, yet the polymer chain is smooth everywhere else.

C =

[
Q

n
p β −Qβ + (n

p
− 1)β

(1−Q)2

][
1− αp

1− α

]
(11)

Now the terms A, B, and C comprise the double sum in (4). So inserting

these terms we have,

〈R2〉 = na2 + 2a2
[
A + B + C

]
(12)

At this point, equation (12) describes a freely rotating chain with abnormal

bends at an angle φ that are positioned equidistant from one another along

the chain. We call these abnormal because they are different from the normal

bends θ found throughout in the regular FRC. The interval distance between

abnormal bends is inversely proportional to the number of these bends since

the overall contour length of the chain L must remain constant. (Note: Ya-

makawa [30] gives a general formulation for a FRC with periodic structure.

Although we did not use this in our derviation of (12) it presumably could be

used to arrive at the same result.)

Finally, we take the limit to the WLC by the well known procedure em-

ployed by Kratky and Porod [27, 44] to generate a semi-stiff continuous contour

chain (Figure 7). The following constraints are held constant in the limit,
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lim
a→0, α→1

a

1− α
≡ A, (13)

lim
a→0, n→∞

na ≡ L

where A is the persistence length derived from the normal FRC. For the present

model we add another constraint for the length of each piece in the chain. This

is,

lim
a→0, p→∞

pa ≡ T

here T is the length between adjacent bends. Making the estimation that as

α → 1 then − ln α ≈ 1− α and solving (13) for α we have,

α = e−a/A (14)

Now, using the above constraints we can simplify each term in 〈R2〉 of

equation (12).

2a2A =

[
L
T
− (L

T
+ 1)e−T/Aβ +

(
e−T/Aβ

)L
T

+1(
1− e−T/Aβ

)2

][
2TA− 2A2

(
1− e−T/A

)]
2a2B =

[
(L

T
− 1)e−T/Aβ − L

T

(
e−T/Aβ

)2
+

(
e−T/Aβ

)2 L
T(

1− e−T/Aβ
)2

][
− 2TA− 2A2

(
1− eT/A

)]
2a2C = 2aA

[
e−

L
A β2 − e−T/Aβ2 + (L

T
− 1)β(

1− e−T/Aβ
)2

](
1− e−T/A

)
a→0
= 0

The first term in equation (12) is zero since na2 = La = 0. The com-

plete function for 〈R2〉bWLC in terms of the length between bends T is given by,

〈R2〉bWLC =

[
L
T
−( L

T
+1)e−T/Aβ+

(
e−T/Aβ

)L
T

+1(
1−e−T/Aβ

)2

][
2TA− 2A2

(
1− e−T/A

)]
+

[
( L

T
−1)e−T/Aβ−L

T

(
e−T/Aβ

)2

+
(

e−T/Aβ
)2 L

T(
1−e−T/Aβ

)2

][
− 2TA− 2A2

(
1− eT/A

)]
A more useful form of this function is found by noticing that the number of

bends, call it P , is given by P = L
T
− 1. This is the form given in equation (1)

where substituting T = L
P+1

gives 〈R2〉bWLC in terms of the number of bends.
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Excluded Volume

Due to increased segment density the interaction between DNA segments

is enhanced with compaction. We therefore look to relate the parameters in

the first order perturbation theory of equation (2) to the number of bends.

As bends are induced in the chain, some regions are perturbed more so than

others. Only at high coverage of the DNA will the entire chain have uni-

form interaction parameters describing its state. Therefore for intermediate

numbers of bends we will approximate the situation with average parameters

linearly related to the number of bends. We now define an average binary

cluster integral,

〈β〉 =
Pβl + (Pmax − P )βs

Pmax

(15)

where βs and βl represent the unperturbed segment and the superhelical loop

cluster integrals respectively. As these superhelical loops form, the effective

contour length of the chain is reduced. We therefore write the number of

segments as a function of increasing bends in the following way:

no =
nl − ns

Pmax

P + ns (16)

where ns and nl are the number of segments in the free chain and completely

covered chain respectively.

Assuming ABF2p binds as a monomer, Diffley and Stillman show the DNA

footprint to be approximately 30 bp. Therefore, assuming a 30 bp×0.34

nm/bp = 10 nm arc segment we estimate the radius of one superhelical loop as

r = 10nm/(102◦π/180◦) and therefore the diameter of the superhelical Kuhn

segments is given by Dl = 2r = 11.2 nm. AFM measurements yield an esti-

mate to the superhelical pitch of 15 nm. Using three ABF2 molecules per loop

(3× 102◦ = 306◦ ∼ 360◦) and using pBR322 DNA with 145 binding sites/3 =

48 loops, we have a final effective contour length of nl = 48 × 15 nm = 725

nm when completely covered in protein. With these calculations we find the

following parameters for ABF2p binding to linearized pBR322,
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βs =
π(100 nm)22 nm

2
= 31.3× 103 nm3

βl =
π(100 nm)211.2 nm

2
= 175.9× 103 nm3

ns = 4361 bp
0.34 nm/bp

100 nm
= 14.8

nl = 48 loops
15 nm/loop

100 nm
= 7.25

Finally, the expression for the mean-squared end-to-end distance with ex-

cluded volume correction is then given by:

〈R2〉 = 〈R2〉bWLC

(
1 +

4

3
z

)
z =

(
3

2π〈R2〉bWLC

)3/2

〈β〉n2
o

2D Correction Factor

Call the angle between a vector from end-to-end and the plane of the surface

θ. Since we are not interested in direction, we can ignore the azimuthal angle

and simply consider possible orientations from θ = 0 (parallel to surface)

and θ = π/2 (orthogonal to surface). Averaging over possible projections we

estimate that, on average, the projected 〈R〉m and real 〈R〉 vectors differ by a

factor π/2.

〈R〉m ≈ 〈R〉〈cos θ〉

〈cos θ〉π/2
0 =

2

π

∴ 〈R〉 ≈ π

2
〈R〉m
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